ADDITION AND SUBTRACTION OF SURDS

Post a Comment
Two or more surds can be added together or subtracted from each other if there are like surds.

Like surds are surds that have the same number under the square root sign. For example, $\sqrt{10}$, $3\sqrt{10}$ are like surds since they have the same number under the square root sign.

The process of adding and subtraction is very simple. You will add or subtract the whole numbers while surds are added or subtracted.

$a\sqrt{b}+c\sqrt{b}=(a+c)\sqrt{b}$

The next examples illustrate how surd are added and subtracted.

๐Ÿ‘‰This post extends our series on surds๐Ÿ‘ˆ
Example 1
Simplify $10\sqrt{7}+3\sqrt{7}$

Solution
$(10+3)\sqrt{7}$
$13\sqrt{7}$

Example 2
Simplify $13\sqrt{13}-8\sqrt{13}$

Solution
$(13-8)\sqrt{13}$
$5\sqrt{13}$

Some surd required that you simplify them so you could derive a like surd

Example 3
Simplify $2\sqrt{2}+\sqrt{18}$

Solution: 
$2\sqrt{2}+\sqrt{9\times2}$
$2\sqrt{2}+\sqrt{9}\times\sqrt{2}$
$2\sqrt{2}+3\sqrt{2}$
$(2+3)\sqrt{2}$
$5\sqrt{2}$

Example 4
Write $2\sqrt{32}+\sqrt{18}-3\sqrt{8}$ as simple as possible

Solution
$2\sqrt{16\times2}+\sqrt{9\times2}-3\sqrt{4\times2}$
$2\sqrt{16}\times\sqrt{2}+\sqrt{9}\times\sqrt{2}-3\sqrt{4}\times\sqrt{2}$
$8\sqrt{2}+2\sqrt{2}-6\sqrt{2}$
$(8+3-6)\sqrt{2}$
$5\sqrt{2}$

Example 4
Write $\sqrt{24}+\sqrt{6}$ in the simplest form

Solution
$\sqrt{4\times6}+\sqrt{6}$
$\sqrt{4}\times\sqrt{6}+\sqrt{6}$
$2\sqrt{6}+\sqrt{6}$
$(2+1)\sqrt{6}$
$3\sqrt{6}$

Example 5
Simplify $\sqrt{1573}-\sqrt{325}$

Solution
$\sqrt{121\times13}-\sqrt{25\times13}$
$\sqrt{121}\times\sqrt{13}-\sqrt{25}\times\sqrt{13}$
$11\sqrt{13}-5\sqrt{13}$
$(11-5)\sqrt{13}$
$6\sqrt{13}$

Example 6
Simplify $6\sqrt{28}-10\sqrt{63}+8\sqrt{112}$

Solution
$6\sqrt{4\times7}-10\sqrt{9\times7}+8\sqrt{16\times7}$
$6\sqrt{4}\times\sqrt{7}-10\sqrt{9}\times\sqrt{7}+8\sqrt{16}\times\sqrt{7}$
$12\sqrt{7}-30\sqrt{7}+32\sqrt{7}$
$(12-30+32)\sqrt{7}$
$14\sqrt{7}$

Related post
Example 7
Simplify $2\sqrt{54}+\sqrt{150}-5\sqrt{24}$ in the simplest form 

Solution
$2\sqrt{9\times6}+\sqrt{25\times6}-5\sqrt{4\times6}$
$2\sqrt{9}\times\sqrt{6}-\sqrt{25}\times\sqrt{6}+5\sqrt{4}\times\sqrt{6}$
$6\sqrt{6}+5\sqrt{6}-10\sqrt{6}$
$(6+5-10)\sqrt{6}$
$\sqrt{6}$

There you have it. Enjoying your read? Subscribe to our newsletter here
Help us grow our readership by sharing this post

Related Posts

Post a Comment

Subscribe Our Newsletter