# SUBTRACTION OF ALGEBRAIC FRACTIONS

An algebraic fraction is one with algebra in the numerator and/or the denominator.

The subtraction of algebraic fractions is straightforward. As with a normal fraction, we take the L.C.M so that the denominator becomes the same.

๐This post is a continuation of our series on algebraic fractions๐

Example 1
Solve $\frac{4}{x+1}-\frac{3}{x-2}$

Solution:
Taking the L.C.M
$\frac{4(x-2)-3(x+1)}{(x+1)(x-2)}$
$\frac{4x-8-3x-3}{(x+1)(x-2)}$
$\frac{x-11}{(x+1)(x-2)}$

Example 2
Simplify $\frac{2}{2w+1}-\frac{1}{w+3}$

Solution:
Taking the L.C.M
$\frac{2(w+3)-1(2w+1)}{(2w+1)(w+3)}$
$\frac{2w+6-2w-1}{(2w+1)(w+3)}$
$\frac{5}{(2w+1)(w+3)}$

Example 3
Simplify $\frac{2}{x-1}-\frac{6}{(x-1)(2x+1)}$

Solution:
Taking the L.C.M
$\frac{2(2x+1)-6(1)}{(x-1)(2x+1)}$
$\frac{4x+2-6}{(x-1)(2x+1)}$
$\frac{4x-4}{(x-1)(2x+1)}$

This can be simplify further
$\frac{4\require{cancel}\bcancel{(x-1)}}{\require{cancel}\bcancel{(x-1)}(2x+1)}$
$\frac{4}{2x+1}$

,
Example 4
Solve $\frac{4x}{t^2-9}-\frac{2}{t+3}$

Solution:
$t^2-9$ is a difference of two squares.
$\frac{4t}{(t+3)(t-3)}-\frac{2}{t+3}$

By taking the L.C.M
$\frac{4t(1)-2(t-3)}{(t+3)(t-3)}$
$\frac{4t-2t+6)}{(t+3)(t-3)}$
$\frac{2t+6}{(t+3)(t-3)}$
$\frac{2(t+3)}{(t+3)(t-3)}$
$\frac{2\require{cancel}\bcancel{(t+3)}}{\require{cancel}\bcancel{(t+3)}(t-3)}$
$\frac{2}{t-3}$

Example 5
Simplify $\frac{r}{r^2-9}-\frac{1}{r^2-4r+3}$

Solution:
$\frac{r}{(r-3)(r+3)}-\frac{1}{(r-3)(r-1)}$.

Taking the L.C.M
$\frac{r(r-1)-1(r+3)}{(r-3)(r+3)(r-1)}$
$\frac{r^2-r-r+3}{(r-3)(r+3)(r-1)}$
$\frac{r^2-2r+3}{(r-3)(r+3)(r-1)}$

Factorizing the numerator
$\frac{(r+1)(r-3)}{(r-3)(r+3)(r-1)}$
$\frac{(r+1)\require{cancel}\bcancel{(r-3)}}{\require{cancel}\bcancel{(r-3)}(r+3)(r-1)}$
$\frac{r+1}{(r+3)(r-1)}$

Example 6
Solve $\frac{5x^2-11x+9}{x^2+3x-10}-\frac{2x-3}{x-2}$

Solution:
The numerator of the right hand is not factorizable, but its denominator is factorizable. Hence we factorize.

$\frac{5x^2-11x+9}{(x-2)(x+5}-\frac{2x-3}{x-2}$

Taking the L.C.M
$\frac{5x^2-11x+9-(x+5)(2x-3)}{(x-2)(x+5)}$
$\frac{5x^2-11x+9-(2x^2+7x-15)}{(x-2)(x+5)}$

Opening the bracket at the numerator
$\frac{5x^2-11x+9-2x^2-7x+15}{(x-2)(x+5)}$
$\frac{3x^2-18x+24}{(x-2)(x+5)}$
$\frac{3x^2-6x-12x+24}{(x-2)(x+5)}$
$\frac{3x(x-2)-12(x-2)}{(x-2)(x+5)}$
$\frac{(3x-12)(x-2)}{(x-2)(x+5)}$
$\frac{(3x-12)\require{cancel}\bcancel{(x-2)}}{\require{cancel}\bcancel{(x-2)}(x+5)}$
$\frac{3x-12}{x+5}$

Related post
Example 7
Solve $\frac{4x}{25x^2-64}-\frac{x}{5x+8}-\frac{1}{5x-8}$

Solution:
$25^2-64$ is difference of two squares
$\frac{4x}{(5x+8)(5x-8)}-\frac{x}{5x+8}-\frac{1}{5x-8}$

Taking the L.C.M
$\frac{4x(1)-x(5x-8)-1(5x+8)}{(5x+8)(5x-8)}$
$\frac{4x-5x^2+8x-5x-8)}{(5x+8)(5x-8)}$
$\frac{-5x^2+7x-8)}{(5x+8)(5x-8)}$

In this next post, we will continue our series on algebraic fractions when we look at multiplication of algebraic fractions.

Meanwhile, if you enjoy this post, do well to share it. Remember that knowledge shared=knowledge²
Help us grow our readership by sharing this post